
1

INF 111 / CSE 121:
Software Tools and Methods

Lecture Notes for Fall Quarter, 2007
Michele Rousseau

Lecture Notes Set 3

Previous Lecture
Software Tools
Methods & Notations
Process Modeling
The Agile Process Model
Started on XP

Lecture Notes 3 2

Today’s Lecture
Continue with XP
Testing
No Silver Bullet

Lecture Notes 3 3

2

Extreme Programming (XP)

Invented by Kent Beck in 1996
● “Seat of the pants” fix to Chrysler project
● To fix problems caused by long development cycles of

traditional process models
Beck Published in 1999
“E t P i E l i d E b Ch ”

Lecture Notes 3 4

“Extreme Programming Explained: Embrace Change”
● Current hot topic in S/W Process
● Loved and Hated
● Tries to associate s/w process with eXtreme sports

Idea: Take a good programming practice and
push it to the extreme
● Eg. Testing
● Testing is good so… do it all the time

Premise of XP
The Four Values

Lecture Notes 3 5

Communication Simplicity Feedback

Courage

Hmmm.. But aren’t these standard “Best Practices”?
What’s new here?

6 Phases Of Development
Exploration
Planning
Iterations to Release
Productionizing

Lecture Notes 3 6

Maintenance
Death

3

Exploration Phase

Customers
● Story Cards – 1 feature per card

◘ Customer wish list for first release

Developers
● Get familiar with

Lecture Notes 3 7

◘ Tools
◘ Technology
◘ Practices
… to be used

● Architecture possibilities explored – Prototype
● Tailor process to the project

A few weeks to months
● How familiar is tech to programmers

Planning Phase
Prioritize Stories
● First Small release agreement

Effort Estimate for each story
● Schedule Agreement

Usually < 2 months

Lecture Notes 3 8

◘Usually < 2 months

Takes a few days

Iterations to Release Phase

Several Iterations before 1st Release

of Iterations determined in planning phase

Each iteration takes 1-4 wks to implement

Lecture Notes 3 9

Select stories wisely
● these enforce system architecture for the entire

system
● Customer chooses stories for each iteration

Functional tests created by Customer
● Run at the end of each iteration

At the end of last iteration Production

4

Productionizing Phase
End testing before release
New changes may be found
●Decide whether to include in current release
●Documented for later implementation

Maintenance Phase

Lecture Notes 3 10

Maintenance Phase

Iterations shortened

Maintenance and Death Phases
Maintenance
● May need more people

◘ Maintain current production
◘ Produce new Iterations
◘ Change team structure

● Development slows

Lecture Notes 3 11

Death Phase
Either…
● All stories complete & quality is satisfactory
● Not delivering expected outcomes
● Too expensive to continue

XP Lifecycle Model

Lecture Notes 3 12

5

14 Key Practices of XP
Programmer
Practices

Simple Design
Test-driven development
Refactoring
Pair programming
Continuous integration
Collective code ownership
Coding standards

13

Just Rules

Management
Practices

Planning Game
Small releases
40-hour week
Open Workspace

Customer Practices On-site customer
Metaphor

Programmer Practices
Simple Design
● Simple solutions no complex or extra code
● Do the simplest thing that will get you thru milestone
● Eliminate duplication in the design
● Don't over engineer, solve problems only when they

occur

Lecture Notes 3 14

Test-driven development
● Unit test implemented before code and are run

continuously (White Box Testing)
◘ Write a simple, automated test before coding

● Customers write functional tests (Black box testing)

Communication Simplicity Feedback

Courage

Programmer Practices (2)
Refactoring
● Improving code without changing features

A change to the system that leaves its behavior
unchanged, but enhances some nonfunctional
quality-simplicity, flexibility, understandability,
performance.

● Automated tests catch any errors that are introduced

Lecture Notes 3 15

Pair Programming 2 people + 1 computer
● One codes, one thinks about the design and catches

errors
Continuous Integration
● Many times / day
● All tests must pass for changes to be accepted
Communication Simplicity Feedback

Courage

6

Programmer Practices (3)
Collective Ownership
● Any developer can change any code any time
● But, “you break it, you fix it”

Coding Standards
● Everyone codes to the same style standards

C ll “ ll i d hi ”

Lecture Notes 3 16

● Corollary to “collective code ownership”
● “No one can recognize who wrote what”

Just Rules
● Team defined – can change

◘ all must agree & impact assessed
Communication Simplicity Feedback

Courage

Pair Programming
Programming is not just “typing”, this is why pair

programming does not reduce productivity (Fowler)

Benefits:
● All design decisions involve at least two brains.
● At least two people are familiar with every part

f th t

Lecture Notes 3 17

of the system.
● There is less chance of both people neglecting

tests or other tasks.
●Changing pairs spreads knowledge throughout

the team.
●Code is always being reviewed by at least one

person.

Management Practices
Planning Game
● Dev estimates effort
● Cust decides what they want and when

Small Short Releases < 2-3 months
● Then less

40 h k k

Lecture Notes 3 18

40-hour work week
● No 2 overtime wks in a row

Open Workspace
● 1 Large Room Small Cubicles
● Pair Programmers in the Center
Communication Simplicity Feedback

Courage

7

Customer Practices

On-site customer
●Need customer/user around to answer

questions
● Builds a bond, working relationship

Lecture Notes 3 19

Metaphors
● “Shared Story” guides development
●Describes how system should work

Communication Simplicity Feedback

Courage

User Story / User Card

Lecture Notes 3 20

http://www.scissor.com/resources/teamroom/

The XP Team Room

Lecture Notes 3 21

8

XP Concepts
XP is a set of key practices that suggest a
software development process.
Key concept: Embrace change.
● Rather than avoid changes, try to reduce the cost of

making changes.

Lecture Notes 3 22

Key concept: Defer costs.
● Rather than face every problem up front, try to start

with a small subset and incrementally plan and carry
out improvements.

XP Proponents Responses to Criticisms
Just a fancy form of build-and-fix.
● False.
● XP is actually a disciplined software process.
● Has the some of the same challenges and adoption

problems as traditional phased processes.

Doesn’t work for large systems.
● False

Lecture Notes 3 23

● False.
● Chrysler Comprehensive Compensation system was a

large system
● Other XP users include Google and John Deere

Doesn’t work for large teams.
● False.
● Large teams are normally broken up into sub-projects
● Same can be applied to large teams using XP

Doesn’t work for geographically distributed teams.
● False.
● Technology is both the cause and the solution
● Planning tools, Skype, IM, revision control

User stories are no substitute for requirements.
● True.

U t i k b th d d th th ti

XP Proponents Resp. to Criticisms (2)

Lecture Notes 3 24

● User stories work, because they depend on the other practices
such as On-site Customer

Doesn’t work with safety-critical software.
● False.
● Same challenges apply here as with phased processes
● Can add checks and balances, documentation, and formal

design as needed

9

Doesn’t produce documentation.
● Maybe. XP only produces as much documentation as is

needed, when it is needed (simplicity).

It is wasteful, because you’re doing constantly
doing re-design.

XP Proponents Resp. to Criticisms (3)

Lecture Notes 3 25

doing re design.
● False.
● Planning everything up front is wasteful, because things are

going to change anyways.

Not suitable for all projects
● True.
● User functionality is simple, algorithms hard
● Example: scientific applications

Productivity Gains

For a Web Dev Project
● 66% increase in new lines of code

produced

Lecture Notes 3 26

p
● 302% inc in new methods developed
● 283% inc in # of new classes implemented

Maruer & Martel 2002b

Cons
Corp Culture must support XP
● Any resistance can lead to failure

Best for teams < 20

Lecture Notes 3 27

Best if teams are collocated
●On the same floor

Technology that does not support
“graceful change” may not be
suitable

10

More Reading if you are interested

Agile
● Abrahamsson, P, et al. (2002). Agile

software development methods: Review
and analysis. VTT Publications 478.

Lecture Notes 3 28

y
● http://www.vtt.fi/inf/pdf/publications/2002/P

478.pdf
XP
● Beck, K. (1999). Extreme programming

explained: Embrace change. Reading
Mass., Addison-Wesley

Take a break!
Stretch, Relax
Get some water, Use the restroom
Get to know your classmates…
Etc…..

When we return…

No Silver Bullet
Testing

Lecture Notes 3 29

Moving on..
No Silver Bullet
Testing

Lecture Notes 3 30

11

The Mythical Man-Month
Originally Published in 1975
● Fred Brooks
● Based on Experiences From OS/360 in

mid-60’s

So why should we care?

Lecture Notes 3 31

So why should we care?

Some interesting Stats
● Amazon.com Sales Rank:

#3,201 in Books
#1 in Microprocessor Design
#3 in Systems Analysis & Design
#12 in Software Engineering

Who is Fred Brooks?

Lecture Notes 3 32

“Father of IBM OS/360”
1992 Computer Pioneer Award (IEEE)
1999 Turing award winner
2007 Harvard Centennial Medal
Founded UNC-Chapel Hill CS dept

No-Silver Bullet
“There is no single development, in either

technology or management technique, which by
itself promises even one order-of-magnitude
improvement within a decade in productivity, in
reliability, in simplicity”

Lecture Notes 3 33

12

Essence & Accident
Essential Tasks
● Specifications, design & testing of conceptual

constructs
Accidental (or incidental) Tasks
● Programming & Compiling

Lecture Notes 3 34

● Programming & Compiling

The essential tasks are the hard part.

Why is building s/w difficult?
“I believe that hard part of building software to

be the specification, design, and testing of
this conceptual construct, not the labor of
representing it and testing the fidelity of the
representation”

Lecture Notes 3 35

It is the nature of s/w – inherent in the
process

Conceptual errors are the problem

Complexity
Conformity
Changeability
I i ibilit

Four Inherent Difficulties

Lecture Notes 3 36

Invisibility

13

Complexity
Very large # of states
Scaling up is not a repetition of the same
elements in large sizes

Elements interact in a non-linear fashion
Complexity Communication

Lecture Notes 3 37

It is difficult to extend large programs
without creating side effects

Complexity makes management difficult
Personnel turnover can be a disaster

Some of Brooks Suggestions
IF an OTS fits – buy it (aka reuse)
●Why re-invent the wheel

Requirements refinement and rapid
prototyping

Lecture Notes 3 38

●Many iterations between client and
designer

Grow – don’t build – software
●Develop incrementally

Train great designers

Is XP the Silver Bullet?
Requires:

Good Developers
…working well together

Sufficient Domain Knowledge
● Onsite Customer is knowledgeable

Sufficient Technical Expertise

Lecture Notes 3 39

Sufficient Technical Expertise
● Knowledge of tools and methods

Good Communication Skills

Collocation
● How do you collocate 4000 programmers?

What if a method or tool is not a SB?

14

Testing
A basic Review

Lecture Notes 3 40

Verification and Validation

Informal

Requirements

Formal

Validation

Lecture Notes 3

41

 Specification

Software

Implementation

Verification

Verification: is implementation consistent with requirements specification?
Validation: does the system meet the customer’s/user’s needs?

V & V

Validation
●Have we built the right system?

◘With respect to the user needs.

Lecture Notes 3 42

Verification
●Have we built the system right?

◘With respect to the specification

15

Software Quality: assessment by V&V

Software process must include
verification & validation to measure
product qualities
● correctness, reliability, robustness

Lecture Notes 3 43

● efficiency, usability, understandability
● verifiability, maintainability
● reusability, portability, interoperability,
● real-time, safety, security, survivability, accuracy

Products can be improved by improving
the process by which they are developed
and assessed

Testing Terminology
Failure: Incorrect or unexpected output,
based on specifications
● System does not behave according to

specifications
● Symptom of a one or more fault

Lecture Notes 3 44

Fault: Invalid execution state
● Symptom or consequence of an error
● May or may not produce a failure
● May produce Many Failures

Error: Defect or anomaly or “bug” in
source code – Human Error
● May or may not produce a fault

Examples: Failures, Faults, and Errors
ERROR => Node 6 should be X:= C*(A+2*B)

Error – but no Fault of Failure
Input: A=2, B=1
Executed Path => (1,2,4,5,7,8)
Fault is not Revealed

Node 6 is not executed

Error – Fault – No Failure
Input: A=-2, B=-1

1: Input A,B

2: A>0?

3: C :=0 4: C := A*B

TrueFalse

Lecture Notes 3 45

p ,
Executed Path => (1,2,3,5,6,8)
Fault Not Revealed

because C = 0

Need select proper test cases
Definitions of C at Nodes 3 and 4

both affect the use of C at node 6
Path (1,2,4,5,6,8) will reveal the failure

but only if B <> 0
(e.g. Inputs (A=1,B=-2))

3: C : 0 C

5: B>0?

6: X := C*(A+2*A) 7: X := A+B

8: Output X

TrueFalse

16

Examples: Failures, Faults, and Errors
ERROR => Node 6 should be X:= C*(A+2*B)

Error – but no Fault or Failure
● Inputs: A = 2, B = 1
● Executed Path => (1,2,4,5,7,8)
● Fault is not Revealed

◘ Node 6 is not executed

Error – Fault – No Failure
Input: A=-2, B=-1

1: Input A,B

2: A>0?

3: C :=0 4: C := A*B

TrueFalse

Lecture Notes 3 46

p ,
Executed Path => (1,2,3,5,6,8)
Fault Not Revealed

because C = 0

Need select proper test cases
Definitions of C at Nodes 3 and 4

both affect the use of C at node 6
Path (1,2,4,5,6,8) will reveal the failure

but only if B <> 0
(e.g. Inputs (A=1,B=-2))

3: C : 0 4: C : A B

5: B>0?

6: X := C*(A+2*A) 7: X := A+B

8: Output X

TrueFalse

Examples: Failures, Faults, and Errors
ERROR => Node 6 should be X:= C*(A+2*B)

Error – but no Fault or Failure
● Inputs: A = 2, B = 1
● Executed Path => (1,2,4,5,7,8)
● Fault is not Revealed

◘ Node 6 is not executed

Error – Fault – No Failure
● Inputs: A = -2, B = -1

1: Input A,B

2: A>0?

3: C :=0 4: C := A*B

TrueFalse

Lecture Notes 3 47

p ,
● Executed Path => (1,2,3,5,6,8)
● Fault Not Revealed

◘ because C = 0

Need select proper test cases
Definitions of C at Nodes 3 and 4

both affect the use of C at node 6
Path (1,2,4,5,6,8) will reveal the failure

but only if B <> 0
(e.g. Inputs (A=1,B=-2))

3: C : 0 C

5: B>0?

6: X := C*(A+2*A) 7: X := A+B

8: Output X

TrueFalse

Examples: Failures, Faults, and Errors
ERROR => Node 6 should be X:= C*(A+2*B)

Error – but no Fault or Failure
● Inputs: A = 2, B = 1
● Executed Path => (1,2,4,5,7,8)
● Fault is not Revealed

◘ Node 6 is not executed

Error – Fault – No Failure
● Inputs: A = -2, B = -1

1: Input A,B

2: A>0?

3: C :=0 4: C := A*B

TrueFalse

Lecture Notes 3 48

p ,
● Executed Path => (1,2,3,5,6,8)
● Fault Not Revealed

◘ because C = 0

Need select proper test cases
● Definitions of C at Nodes 3 and 4

both affect the use of C at node 6
● Path (1,2,4,5,6,8) will reveal the failure

◘ but only if B <> 0
◘ e.g. Inputs: A = 1, B = -2

3: C : 0 C

5: B>0?

6: X := C*(A+2*A) 7: X := A+B

8: Output X

TrueFalse

17

Why do we care about Errors /
Faults that never show up?

Latent faults
●Can be subsumed by previous statements
●Maybe that state is never entered

Lecture Notes 3 49

Software is often reused later

Conditions not hit in prev. version may
be accessed later
●Code Changes

For Example: Ariane 5
Capable of hurling 2 – 3 ton
satellites into orbit

10 years

$7 Billion

Lecture Notes 3 50

$

Would have given Europe
supremacy in the
commercial satellite
business

Some Slides Adapted from Sommerville

Arian 5 (2)
Successor to the
successful Ariane 4
launchers

Ariane 5 can carry a

Lecture Notes 3 51

heavier payload

18

Whoops!
40 seconds into
maiden flight
● veers off course & self-

destructed

39 d ft lift

Lecture Notes 3 52

39 seconds after lift
off
● Altitude reaches 2.5 miles
● Ariane 5 goes into self

destruct
● Carrying 5 expensive -

uninsured satellites

Why?
Why did it go into
self destruct mode?
● Incorrect control

signals were sent to
the engines and
these swivelled -
A i 5 d

Lecture Notes 3 53

Ariane 5 swerved
● Pressure in boosters

and main engine

Why did it swerve?
● It was making a

course correction that
was not needed.

Launcher Failure
Why the course correction?
● Steering controlled by onboard computer

● Thought course change was necessary because of numbers
being displayed by the inertial guidance system

● The numbers looked like data – impossible data- but was
actually an error message

Lecture Notes 3 54

The guidance system had shutdown

Why did the guidance system shutdown?
● Tried to convert a 64-bit format velocity to a 16-bit format
● Overflow error

What about the backup?
● Backup system failed too..

◘ It was running the same software

19

In a nutshell…
Software Failure

Software was reused form Ariane 4.
● Fault was never found when testing for Ariane 4

● Ariane 4 Physically smaller

Lecture Notes 3 55

◘ lower initial acceleration and build up of horizontal velocity
than Ariane 5

● The value of the variable on Ariane 4 could never
reach a level that caused overflow during the launch
period.

Avoidable?
The computation that resulted in
overflow was not used by Ariane 5

Decisions were made
●Not to remove the facility as this could

introduce new faults

56

introduce new faults
●No exception handling for overflows

◘Processor was heavily loaded
◘Wanted spare processor capacity for

dependability

Since there was no requirement
no test (not a validation error)

Happy Ending…

They fixed the
error and…

Lecture Notes 3 57

20

Why not exhaustively test everything?
for (i = 0; i<100; i++) {

if (a[i] == true){
System.out.println(“1”);

}
else {
System.out.println(“0”);
}

Lecture Notes 3 58

}
}

How long would it take to test exhaustively?
● Possible outputs?
● How long for each output?

2^100 outcomes @ 10 000 000 print statements/
second = 3 x 104 years

Why not exhaustively test everything?

Not feasible to run all those test cases

Not feasible to validate them once they are
run

Lecture Notes 3 59

run
● Need to know the output
● Need to compare expected to actual

(oracle)

Typical Testing Process

Oracle

Test

Subset of
Input

Expected
Output

Lecture Notes 3 60

Program /
Spec

Test
Strategy

Program /
Spec

Compare
Input Results

Subset of
Input

Actual
Output

